Probability Review

Why Probabilistic Robotics?

- autonomous mobile robots need to accommodate the uncertainty that exists in the physical world
- sources of uncertainty
- environment
b sensors
- actuation
b software
- algorithmic
probabilistic robotics attempts to represent uncertainty using the calculus of probability theory

Axioms of Probability Theory

$\operatorname{Pr}(A)$ denotes probability that proposition A is true.

$$
\begin{aligned}
& 0 \leq \operatorname{Pr}(A) \leq 1 \\
& \operatorname{Pr}(\text { True })=1 \quad \operatorname{Pr}(\text { False })=0 \\
& \operatorname{Pr}(A \vee B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \wedge B)
\end{aligned}
$$

A Closer Look at Axiom 3

$$
\operatorname{Pr}(A \vee B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \wedge B)
$$

Using the Axioms

$$
\begin{array}{clc}
\operatorname{Pr}(A \vee \neg A) & = & \operatorname{Pr}(A)+\operatorname{Pr}(\neg A)-\operatorname{Pr}(A \wedge \neg A) \\
\operatorname{Pr}(\text { True }) & = & \operatorname{Pr}(A)+\operatorname{Pr}(\neg A)-\operatorname{Pr}(\text { False }) \\
1 & = & \operatorname{Pr}(A)+\operatorname{Pr}(\neg A)-0 \\
\operatorname{Pr}(\neg A) & = & 1-\operatorname{Pr}(A)
\end{array}
$$

Discrete Random Variables

- X denotes a random variable.
- X can take on a countable number of values in $\left\{x_{1}, x_{2}\right.$,
$\left.\ldots, x_{n}\right\}$.
- $P\left(X=x_{i}\right)$, or $P\left(x_{i}\right)$, is the probability that the random variable X takes on value x_{i}.
- $P(\cdot)$ is called probability mass function.

Discrete Random Variables

fair coin

$$
\mathrm{P}(\mathrm{X}=\text { heads })=\mathrm{P}(\mathrm{X}=\text { tails })=1 / 2
$$

fair dice

$$
\mathrm{P}(\mathrm{X}=1)=\mathrm{P}(\mathrm{X}=2)=\mathrm{P}(\mathrm{X}=3)=\mathrm{P}(\mathrm{X}=4)=\mathrm{P}(\mathrm{X}=5)=\mathrm{P}(\mathrm{X}=6)=1 / 6
$$

Discrete Random Variables

sum of two fair dice

$\mathrm{P}(\mathrm{X}=2)$	$(1,1)$	$1 / 36$
$\mathrm{P}(\mathrm{X}=3)$	$(1,2),(2,3)$	$2 / 36$
$\mathrm{P}(\mathrm{X}=4)$	$(1,3),(2,2),(3,1)$	$3 / 36$
$\mathrm{P}(\mathrm{X}=5)$	$(1,4),(2,3),(3,2),(4,1)$	$4 / 36$
$\mathrm{P}(\mathrm{X}=6)$	$(1,5),(2,4),(3,3),(4,2),(5,1)$	$5 / 36$
$\mathrm{P}(\mathrm{X}=7)$	$(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)$	$6 / 36$
$\mathrm{P}(\mathrm{X}=8)$	$(2,6),(3,5),(4,4),(5,3),(6,2)$	$5 / 36$
$\mathrm{P}(\mathrm{X}=9)$	$(3,6),(4,5),(5,4),(6,3)$	$4 / 36$
$\mathrm{P}(\mathrm{X}=10)$	$(4,6),(5,5),(6,4)$	$3 / 36$
$\mathrm{P}(\mathrm{X}=11)$	$(5,6),(6,5)$	$2 / 36$
$\mathrm{P}(\mathrm{X}=12)$	$(6,6)$	$1 / 36$

Discrete Random Variables

- plotting the frequency of each possible value yields the histgram

Continuous Random Variables

- X takes on values in the continuum.
- $p(X=x)$, or $p(x)$, is a probability density function.

$$
\operatorname{Pr}(x \in(a, b))=\int_{a}^{b} p(x) d x
$$

E.g. $p(x)$

Continuous Random Variables

- unlike probabilities and probability mass functions, a probability density function can take on values greater than 1
* the textbook authors warn you (on pl5) that they use the terms probability, probability density, and probability density function interchangeably

Continuous Random Variables

- normal or Gaussian distribution in 1D

$$
p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Continuous Random Variables

- $1 D$ normal, or Gaussian, distribution
- μ mean
- σ standard deviation
, $\Sigma=\sigma^{2}$ variance

Continuous Random Variables

- $2 D$ normal, or Gaussian, distribution
- μ mean
- \sum covariance matrix

$$
p(x)=\frac{1}{\sqrt{\operatorname{det}(2 \pi \Sigma)}} e^{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)}
$$

Continuous Random Variables

in $2 D$
isotropic

$$
\Sigma=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Continuous Random Variables

in $2 D$
anisotropic

Continuous Random Variables

in $2 D$
anisotropic

$$
\Sigma=\left[\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right]
$$

Continuous Random Variables

in $2 D$
anisotropic

$$
\Sigma=\left[\begin{array}{ll}
2.5 & 1.5 \\
1.5 & 2.5
\end{array}\right]
$$

Joint Probability

- the joint probability distribution of two random variables

$$
P(X=x \text { and } Y=y)=P(x, y)
$$

describes the probability of the event that X has the value x and Y has the value y
If X and Y are independent then

$$
P(x, y)=P(x) P(y)
$$

Joint Probability

- the joint probability distribution of two random variables

$$
P(X=x \text { and } Y=y)=P(x, y)
$$

describes the probability of the event that X has the value x and Y has the value y

- example: two fair dice

$$
\begin{aligned}
& P(X=\text { even and } Y=\text { even })=9 / 36 \\
& P(X=1 \text { and } Y=\text { not } 1)=5 / 36
\end{aligned}
$$

Joint Probability

example: insurance policy deductibles

Joint Probability and Independence

- X and Y are said to be independent if

$$
P(x, y)=P(x) P(y)
$$

for all possible values of x and y

- example: two fair dice

$$
\begin{aligned}
& P(X=\text { even and } Y=\text { even })=(1 / 2)(1 / 2) \\
& P(X=1 \text { and } Y=\text { not } 1)=(1 / 6)(5 / 6)
\end{aligned}
$$

- are X and Y independent in the insurance deductible example?

