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 autonomous mobile robots need to accommodate the 
uncertainty that exists in the physical world 

 sources of uncertainty 
 environment 
 sensors 
 actuation 
 software 
 algorithmic 

 probabilistic robotics attempts to represent uncertainty using 
the calculus of probability theory 
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Pr(A) denotes probability that proposition A is true. 

 
   

 
  

  
   

Axioms of Probability Theory 
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A Closer Look at Axiom 3 
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Using the Axioms 
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Discrete Random Variables 

 X denotes a random variable. 

 X can take on a countable number of values in {x1, x2, 
…, xn}. 

 P(X=xi ), or P(xi ), is the probability that the random 
variable X takes on value xi.  

 P( ∙ ) is called probability mass function. 
 



Discrete Random Variables 
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 fair coin 
 
 

 fair dice 

P(X=heads) = P(X=tails) = 1/2 

P(X=1) = P(X=2) = P(X=3) = P(X=4) = P(X=5) = P(X=6) = 1/6 



Discrete Random Variables 
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 sum of two fair dice 

P(X=2) (1,1) 1/36 
P(X=3) (1,2), (2,3) 2/36 
P(X=4) (1,3), (2,2), (3,1) 3/36 
P(X=5) (1,4), (2,3), (3,2), (4,1) 4/36 
P(X=6) (1,5), (2,4), (3,3), (4,2), (5,1) 5/36 
P(X=7) (1,6), (2,5), (3,4), (4,3), (5,2), (6, 1) 6/36 
P(X=8) (2, 6), (3, 5), (4,4), (5,3), (6, 2) 5/36 
P(X=9) (3, 6), (4, 5), (5, 4), (6, 3) 4/36 
P(X=10) (4, 6), (5, 5), (6, 4) 3/36 
P(X=11) (5, 6), (6, 5) 2/36 
P(X=12) (6, 6) 1/36 
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 plotting the frequency of each possible value yields the 
histgram 
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Continuous Random Variables 

 X takes on values in the continuum. 

 p(X=x), or p(x), is a probability density function. 
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Continuous Random Variables 

 unlike probabilities and probability mass functions, a 
probability density function can take on values greater than 1 
 the textbook authors warn you (on p15) that they use the terms 

probability, probability density, and probability density function 
interchangeably 
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 normal or Gaussian distribution in 1D  
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Continuous Random Variables 
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 1D normal, or Gaussian, distribution 
      mean 
      standard deviation 
             variance 
σ
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 2D normal, or Gaussian, distribution 
       mean 
       covariance matrix ( )
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 in 2D 
 isotropic  
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Continuous Random Variables 
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 in 2D 
 anisotropic  
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 in 2D 
 anisotropic  
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Continuous Random Variables 
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 in 2D 
 anisotropic  
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Joint Probability 

 the joint probability distribution of two random 
variables 

 
   P(X=x and Y=y) = P(x,y) 

 
 describes the probability of the event that X has the 

value x and Y has the value y  

 If X and Y are independent then  
  P(x,y) = P(x) P(y) 



Joint Probability 
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 the joint probability distribution of two random variables 
 
    P(X=x and Y=y) = P(x,y) 

 
 describes the probability of the event that X has the value x 

and Y has the value y  

 example: two fair dice 
 
    P(X=even and Y=even) = 9/36 
    P(X=1 and Y=not 1) = 5/36 
 



Joint Probability 
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 example: insurance policy deductibles 

$0 $100 $200 

$100 0.20 0.10 0.20 

$250 0.05 0.15 0.30 

home 

automobile 

x 

y 



Joint Probability and Independence 
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 X and Y are said to be independent if 
 
    P(x,y) = P(x) P(y) 
 
 for all possible values of x and y  
 
 example: two fair dice 

 
  P(X=even and Y=even) = (1/2) (1/2) 
   P(X=1 and Y=not 1) = (1/6) (5/6) 
 

 are X and Y independent in the insurance deductible example? 
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